AQA Combined Science & Physics.

Unit 4: Atomic Structure

Key Terms				
1	Atom	The smallest part of a substance that can exist		
2	nucleus	Positive central mass of an atom		
3	Proton	Positive subatomic particle in nucleus		
4	Neutron	Neutral subatomic particle in nucleus		
5	Electron	Negative subatomic particle which orbits the nucleus		
6	Atomic number	The number of protons in an atom of an element		
7	Mass number	The number of protons and neutrons in an atom of an		
		element		
8	Energy level	Shells in which electrons orbit the nucleus		
9	ion	charged particle that has lost or gained electron(s)		
10	isotope	element with the same number of protons but		
		different number of neutrons		
11	radioactive	Substance which emits ionizing radiation or particles		

Radioactivity					
12	Radioactive		unstable nuclei emitting a type of radiation (α , β , γ		
	decay		or neutron)		
13	Becquerel (Bq)		1 Bq is one decay per second.		
14	random		cannot predict when or which nucleus will decay		
15	Geiger counter		Detects and counts number of radioactive decays		
16	Activity		Release of ionizing radiation or particles due to the		
			random decay of unstable nuclei		
17	Half-life		time it takes for the number of nuclei of the isotope		
			in a sample to halve		
18	Penetration		The distance radioactive particles can travel through		
			a substance		
19				2 neutrons	Least penetrating
	Alpha	a 44a	2 protons		
	лірпа	u	2110	Highly ionising	Stopped by
					paper/skin
20				1 electron	Fairly penetrating
	Beta	β	$_{-1}^{0}e$	Weakly ionising	Stopped by
					aluminium
21			oγ	EM wave	Most penetrating
	gamma	amma γ		Low ionising	Slowed by thick
					concrete and lead

Discovery of the Atom			
22	John Dalton	First described atoms as solid spheres	
23	JJ Thomson	Discovered electrons within atoms	
24	Plum pudding	Atom is ball of positive charge with electrons	
	model	scattered within it	
25	Ernest Rutherford	Discovered the positive nucleus at the centre of the	
		atom	
26	Alpha scattering	Alpha particles fired at a sheet of gold foil. Some	
	experiment	particles were deflected or reflected by the nucleus	
27	Niels Bohr	theorised electrons in shells orbiting the nucleus	
28	James Chadwick	Discovered the neutron in the nucleus	
29	Size of atom	1 x 10 ⁻¹⁰ m (0.1nm)	
30	Size of nucleus	1 x 10 ⁻¹⁴ m	

Nuclear equations		
31	Alpha decay	atomic number decreases by 2, mass number
		decreases by 4
32	Alpha equation	$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}\alpha$
33	Beta decay	Neutron turns into proton and releases 1 electron.
		Atomic number increase by 1, mass number the same.
34	Beta equation	${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}\beta$
35	Gamma decay	no change to the nucleus when gamma radiation
		emitted. It is the nucleus getting rid of excess energy.

Irradiation and contamination			
36	Irradiation	Process by which an object is exposed to radiation	
37	Contamination	presence of radioactive substances on surfaces or	
		within substances (including the human body)	
38	Exposure	Placing an object in the pathway of ionizing radiation.	
39	Uses of	Use ionising radiation to kill pathogens in food and	
	irradiation	sterilise equipment.	
40	Cancer	Uncontrolled cell division; can be caused by exposure	
		to ionising radiation.	